好的,没有问题。我将为您不遗漏地、缓慢逐步地详细解释这份名为“UN3079 RECITATION 7”的文档,从头到尾涵盖每个部分的所有内容和全部细节。我会添加详细的解释、具体的数值示例,并按照您的要求为标题添加连续编号,使用Markdown格式标记公式和物理化学名词。


1. 标题和课程信息

## UN3079 RECITATION 7 ## Recitation: Mondays 9am (Havemeyer 711) & 6pm (Havemeyer 320) TA: Lauren Schaffer (she/they); E-mail: 1ks2160@columbia.edu Office Hour: Tuesdays 5:30-6:30pm, Havemeyer 7th Floor.

详细解释

这部分是文档的抬头,提供了基本的课程管理信息。


2. 第一部分:溶液 I:液-液溶液 (第24章)

## I. Solutions I: Liquid-Liquid Solutions (Chapter 24) We move on to describing the thermodynamics of liquid-liquid solutions. Perhaps most importantly we will meet the Gibbs-Duhem equation, which relates the change in the properties of one component of a solution in terms of the change in the properties of the other component. Just like how we had ideal gases, our simplest model of a solution we will use is called an "ideal solution," which obeys Raoult's law over the entire composition range.

详细解释

这部分是本次习题课主题的引言,介绍了即将讨论的核心概念。


3. 活度和标准态

We will also be introduced to a term called "activity" $\boldsymbol{a}_{j}$, which measures a solution's deviation from ideality or it's "effective concentration" in a mixture. Activity is calculated with respect to a specific standard state. Activity of pure substances in condensed phases (solid or liquids) is normally taken as 1. We have the freedom to choose the specific standard state depending on the physical system we are looking at. This chapter looks at two commonly used standard states: 1) A solvent (Raoult's law standard state) 2) A solute (Henry's law standard state)

详细解释

这部分引入了活度这个重要概念,用以修正非理想行为。


4. 拉乌尔定律与亨利定律

Pj=xjPjP_{j}=x_{j} P_{j}^{*}

Pj=xjkH,jP_{j}=\boldsymbol{x}_{\boldsymbol{j}} \boldsymbol{k}_{\boldsymbol{H}, \boldsymbol{j}}

详细解释

这里给出了两个描述溶液蒸气压的基本定律的数学表达式。


5. 理想溶液的性质与相图

An ideal solution follows Raoult's law across the range of concentrations. Additionally, $\Delta H_{\text {mix }}=0$ and $\Delta V_{\text {mix }}=0$. ![](https://cdn.mathpix.com/cropped/2025_10_18_74c283ebb46b43f7c69dg-01.jpg?height=589&width=652&top_left_y=1425&top_left_x=262) The solution of toluene (A) in a mixture with benzene (B) is close to ideal and follows Raoult's law in the two-phase equilibrium region $\mathbf{g}+\mathbf{l}$. Here, $\mathrm{z}_{\mathrm{A}}$ is the mole fraction of toluene in the composition. You will also see variables $\mathbf{x}_{\mathbf{A}}$ and $\mathbf{y}_{\mathbf{A}}$ which are the mole fraction of toluene in the liquid phase and the vapor phase, respectively. It should be evident that $$ p_{\mathrm{A}}=x_{\mathrm{A}} p_{\mathrm{A}}^{*} \quad p_{\mathrm{B}}=\left(1-x_{\mathrm{A}}\right) p_{\mathrm{B}}^{*} $$ Additionally, at equilibrium between gas and liquid phases $\mathbf{g}+\mathbf{l}, \mu_{A}^{l}\left(T, P, x_{A}\right)=\mu_{A}^{g}\left(T, P, y_{A}\right)$. Vaporus: Also called "dew point line" or "saturated vapor line," it is the point of formation of the first liquid drop as you increase pressure. Liquidus: Also called "bubble point line" or "saturated liquid line," it is the point of formation of first vapor bubble as pressure decreases.

详细解释

这部分详细描述了理想溶液的宏观性质,并结合一个典型的压力-组成相图进行说明。


6. 问题1:推导气相线方程

When the binary system contains a liquid phase and a gas phase in equilibrium, the total pressure is the sum of $\mathrm{p}_{\mathrm{A}}$ and $\mathrm{p}_{\mathrm{B}}$ $$ \begin{equation*} P_{\text {total }}=x_{A} P_{A}^{*}+x_{B} P_{B}^{*} \tag{1} \end{equation*} $$ and the vapor phase fraction of benzene can be defined as $$ \begin{equation*} y_{B}=\frac{x_{B} P_{B}^{*}}{P_{\text {total }}} \tag{2} \end{equation*} $$ 1.) Derive equation 3, which is the vaporus line in the above figure. ... $$ \begin{equation*} P_{\text {total }}=\frac{P_{A}^{*} P_{B}^{*}}{P_{B}^{*}-y_{B}\left(P_{B}^{*}-P_{A}^{*}\right)} \tag{3} \end{equation*} $$

详细解释与推导

这个问题的目标是推导出**气相线(Vaporus line)**的方程。气相线方程描述了总压力 PtotalP_{total} 和气相组成 (yAy_AyBy_B) 之间的关系。我们手上有两个基本关系:

  1. 总压是液相组成 xA,xBx_A, x_B 的函数(这是液相线方程)。
  2. 气相组成 yBy_B 和液相组成 xBx_B 之间的关系(道尔顿分压定律拉乌尔定律的结合)。

我们的任务是消去中间变量 xAx_AxBx_B,得到一个只包含 PtotalP_{total}yBy_B 的关系。

推导步骤: (我们以苯,即组分B为例进行推导)


7. 偏摩尔量 (Partial molar quantities) (24-1)

We're starting to use our total differentials and Maxwell relations to describe actual physical systems. In this unit we'll mostly use Gibbs energy for its dependence on $T$ and $P$, which are easily measured experimental quantities. Recall our total derivatives for $G$: ...

详细解释

这部分开始从数学上引入描述多组分体系性质的工具——偏摩尔量,特别是化学势


8. 二元溶液和广延性质的积分形式

An example of a 2-component system is called a binary solution... dG = -SdT + VdP + \mu_1 dn_1 + \mu_2 dn_2 ... at constant T and P, dG = \mu_1 dn_1 + \mu_2 dn_2 ... integrate to obtain: G(T, P, n_1, n_2) = \mu_1 n_1 + \mu_2 n_2 ... for a single (pure) component system, $G = \mu n$, or $\mu = G/n = \bar{G}$. In your homework it is useful to use partial molar volumes... V(T, P, n_1, n_2) = \bar{V}_1 n_1 + \bar{V}_2 n_2

详细解释

这部分展示了如何从偏摩尔量的微分形式得到其积分形式,这对计算体系的总性质至关重要。


9. 吉布斯-杜亥姆关系 (Gibbs-Duhem Relation) (24-2)

2.) Derivation of Gibbs-Duhem Relation a. At constant T and P, we can write G(T, P, n_1, n_2) = \mu_1 n_1 + \mu_2 n_2. Differentiate both sides. b. We also know that at constant T and P, we have dG = \mu_1 dn_1 + \mu_2 dn_2. Subtract this from the expression in (a). What does this leave us? c. Let's divide both sides by (n_1 + n_2). What is the definition of mole fraction? Qualitatively, what does this final expression tell us?

详细解释与推导

这个问题引导我们推导吉布斯-杜亥姆方程,它展示了多组分体系中各组分化学势之间的制约关系。


10. 问题3:理想溶液化学势方程的推导

3.) The chemical potential of an ideal solution can be written as: $$ \mu_{1}=\mu_{1}^{*}+R T \ln \left(x_{1}\right) $$ where $\mu_{1}{ }^{*}$ is the chemical potential of the pure solvent and $\mathrm{x}_{1}$ is its mole fraction. Derive this equation and show all steps of work.

详细解释与推导

这个问题的目标是推导理想溶液中组分化学势的表达式。


11. 练习题4:应用吉布斯-杜亥姆方程

4.) For example, suppose we had a liquid-liquid solution, and we were to know that the chemical potential of component 2: $$ \mu_{2}=\mu_{2}^{*}+R T \ln x_{2} \quad for \quad 0 \leq x_{2} \leq 1 $$ How can we use the Gibbs-Duhem relation to find the equation $\mu_{1}$ ?

详细解释与求解

这个问题展示了吉布斯-杜亥姆方程的威力:已知一个组分的化学势表达式,可以求出另一个组分的。


12. 练习题5:处理非理想溶液的蒸气压数据

5.) The vapor pressure (in torr) of the two components in a binary solution are given by $$ P_{1}=120 x_{1} e^{0.20 x_{2}^{2}+0.10 x_{2}^{3}} $$ And $$ P_{2}=140 x_{2} e^{0.35 x_{1}^{2}-0.10 x_{1}^{3}} $$ Determine the values of $P_{1}^{*}, P_{2}^{*}, k_{H, 1}$ and $k_{H, 2}$.

详细解释与求解

这个问题给出了一个非理想溶液的蒸气压模型(因为表达式中含有指数项,偏离了拉乌尔定律),要求我们根据这个模型确定四个关键参数。

这份文档的全面解析到此结束。希望能帮助您彻底理解其中的所有内容。